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1. INTRODUCTION 

1.1 Motivation 

Traditional supply chains consist of manufacturers, who process, assemble and sell products 

to customers. Once the product has been sold, the ownership of the product is transferred on 

to the customer. Typically after a possible warranty period, the repair, maintenance and 

eventual disposal of the product is then the responsibility of the customer. The reverse 

processing activities of inspection, parts remanufacturing, and materials recycling can 

substantially reduce the material and energy consumed by producing goods. Although these 

activities have a beneficial environmental impact, customers fail to participate in the 

remanufacturing efforts by producers or third parties because they often lack incentives.  

Remanufacturing has received tremendous attention from companies over the last few 

decades. Although one side of the coin is to extend the life of used products and achieve a 

sustainable environment, there is an economic aspect to it that is attractive. A lot of 

companies seem to be making huge profits in the remanufacturing business today. But, one 

thing that drew so much attention to remanufacturing in the past few decades is the quality of 

the final product. It can be said that a remanufactured product is ready for a second life, 

performing as new [16]. 

To encourage remanufacturing, several environmental and economic thinkers have proposed 

a concept called “servicizing” [28].  In this paradigm, producers become service providers 

who provide the use and maintenance of products while retaining ownership; customers 

become clients who pay fees to receive the benefits the products provide. Instead of extensive 

buying and disposing of products, servicizing includes the obligation to dispose of used 

products responsibly, while reusing them and their constituent parts and materials as much as 
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possible. However, because the provider retains responsibility for the product while it is in 

use by different client firms, the service paradigm also creates the need for better information 

and communication technology to increase the provider’s knowledge of the product 

condition. Monitoring the condition of the equipment enhances the ability of the service 

provider to make better replacement decisions (when to replace the product in the fleet to 

avoid failures) and better inventory management decisions (how much remanufactured stock 

to maintain so the customer is ensured a working product at all times). This thesis aims at 

optimizing the replacement and inventory decisions of the service provider in order to 

minimize the long-run overall cost per unit time. 

1.2 Background 

Most companies that adopt remanufacturing rely on return of used products from the 

customers to process them to ‘as good as new’ condition. These companies could be original 

equipment manufacturers (OEMs) which adopt various collection techniques to acquire these 

used products or service providers which retain the ownership of the product throughout its 

lifecycle and thereby take possession of the product towards the end of its cycle. Providing 

product-based services, termed as servicizing, is a strategy in which the producers provide the 

use and maintenance of products while retaining ownership and the prospective customers, or 

clients, pay the fees to receive the services of products. This strategy minimizes repeatedly 

buying and disposing of the products. Providing product-based services requires the producer 

to extend its responsibility for the product both during and after the use phase.  For example, 

heavy equipment manufacturers offer “power by the hour” contracts to major customers and 

the service contracts frequently include replacement of the initial machine with newer or 

better ones, and the machines coming off the fleet due to end of lease are remanufactured 

extensively [1]. Service providers must choose when to take old products out of service, and 
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decide whether to remanufacture them or replace them with newly manufactured products.  

Decisions regarding maintenance, repair, replacement, and remanufacturing all are complex 

due to uncertainty in the product’s condition.  This uncertainty is especially significant to a 

servicizer, who must ensure that its equipment remains in proper working order to provide 

continuous service to geographically dispersed client firms.   

Servicizing motivates the use of condition monitoring. Condition monitoring is the process of 

monitoring a parameter of condition in machinery, such that a significant change is indicative 

of a developing failure. Companies use sensors, information and communication technology 

to increase visibility of the product’s condition and environment while in use.  For example, 

the large earth-moving equipment and mining equipment produced by Caterpillar, Inc., 

frequently is equipped with remote monitoring devices along with communication equipment 

that transmits the data to a server.  Under a service agreement, software algorithms determine 

when to perform service on a particular machine based on remotely-monitored fuel burn and 

load cycles. Condition monitoring helps make better decisions on the maintenance of the 

product and also helps determine the ‘remanufacturability’ of the return. The remanufacturing 

leadtimes and costs of the products depend strongly on their condition. Condition monitoring 

helps reduce the number of failures and replace the product while it is still in a 

‘remanufacturable’ state. 

Remanufacturing facilities operate together with a manufacturing plant in satisfying the 

demand. These types of systems are known as hybrid manufacturing and remanufacturing 

systems. Remanufacturing involves a reverse flow of products which makes the inventory 

management in hybrid systems quite complex. In most cases, remanufacturing is less costly 

than manufacturing a new product. However, the entire market demand cannot be satisfied by 

remanufacturing since the return rate is lower than the demand rate due to possible failures. 
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Therefore, it is crucial to have a good coordination between the manufacturing and 

remanufacturing processes. It is highly challenging due to the uncertainty in the quantity, 

quality and also the timing of the returns. Many techniques have been proposed to influence 

the quantity and timing of the returns but the variability in the returned product quality 

remains an issue. This is because the remanufacturing effort required to make the product ‘as 

good as new’ depends on the condition (quality) of the product. It is highly unlikely that all 

returned products are in the same working condition and require the same remanufacturing 

effort to bring them back to ‘as good as new’ condition. Thus it is very important that we 

include in our model, the differences in the cost and leadtime of the remanufacturing process 

based on the condition of the return.  

1.3 Objective 

In this thesis, we consider a fleet of products that is condition monitored at frequent intervals 

and the replacement decisions (whether to replace the product or wait) are made by the 

service-provider based on the condition information. These decisions are made at instants 

called decision epochs.  For each replacement, there is a demand for a new product to fill in 

the gap in the fleet. This demand can be fulfilled by remanufacturing a returned product or 

manufacturing a new one.  An ideal model would contain a policy that can both make optimal 

replacement decisions and maintain optimal inventory level for the system. This thesis 

considers these policies and decisions separately.  The replacement decisions are made based 

on a replacement policy that has been proven optimal in [5]. We show the procedure to 

calculate the replacement and failure rates of the system with condition monitoring and 

illustrate with a numerical example. The focus of the study is then directed to the 

management of inventory. When a product in the fleet is replaced with a new one, it is sent 

back into the loop to be remanufactured. The product returns are of varying quality 
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(condition). And, when a customer returns a product, it is required to be replaced with an ‘as 

good as new’ one immediately. Thus we try to analyze the inventory level of the 

remanufactured products in order to ensure that the customer has a working product available 

at all times. We follow a continuous-review base stock policy to maintain an optimal stock 

level for the serviceable inventory [14]. The primary aim is to minimize the long-run average 

cost per unit time. We illustrate with an example to study the effect of the serviceable 

inventory level and the remanufacturable disposal levels on the cost function. 

1.4 Thesis Organization 

The rest of the thesis is organized as follows. Chapter 2 presents an overview of the most 

relevant academic literature. Chapter 3 presents our model with details of all the notations. 

Chapter 4 describes in detail the procedure adopted to calculate the replacement rates for each 

state. And Chapter 5 introduces the inventory management policy and describes the 

procedure adopted to obtain the optimal base stock level of the serviceable inventory along 

with a numerical example. This chapter also discusses the results obtained under different 

assumptions about inventory holding costs, in detail. This is followed by Chapter 6 which 

concludes this study with a few remarks and scope for further research.  
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2. LITERATURE REVIEW 

The importance of remanufacturing and its environmental relevance has been stressed greatly in 

recent literature. The increasing environmental concern has motivated many firms to emphasize waste 

reduction and make remanufacturing an integral part of their marketing strategy. Rather than selling 

the products and allowing them to be discarded, many producers provide the use and maintenance of 

products while retaining ownership. Providing these product-based services is called servicizing. This 

strategy has gained attention for its expected economic and environmental benefits and also 

encouraged research in many areas. However, because the provider retains responsibility for the 

product while it is in use by different client firms, the service paradigm also creates the need for better 

information and communication technology (ICT) to increase the provider’s knowledge of the 

product condition. This encourages the use of condition monitoring equipment to monitor the product 

at frequent intervals. By doing this, the producer is able to make better decisions on when to replace 

the machine in the fleet with a new one and thereby have product returns with better 

‘remanufacturability’. Most remanufacturing processes work together with a manufacturing unit to 

satisfy customer demand. Some literature about such manufacturing/remanufacturing hybrid systems 

is also discussed in this section. 

Recent literature has examined servicizing with remanufacturing from both the environmental and the 

economic points of view. Sundin et al. [7] focused on selling services or functions instead of physical 

products. They asserted that this practice, combined with remanufacturing, could be a way of closing 

material flows in present society. Their analysis showed that it is preferable that products aimed for 

service-selling be designed to be remanufactured. Cooper [8] also focused on the sustainability aspect 

of product life. He developed a theoretical model to demonstrate how, by contributing to efficiency 

and sufficiency, longer product life spans may secure progress toward sustainable consumption. 

Sundin and Bras [9] also discussed the economic and environmental benefits of functional sales, their 
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term for servicizing, used in connection with product remanufacturing. Their research elucidated 

these benefits and argued for why products to be used for functional sales should be remanufactured. 

Most literature indicates that greater knowledge about the outcome of the remanufacturing process 

facilitates the integration of inventory from production and replenishment. Ferrer [2] discussed the 

decision making process based on yield information. He compared the scenarios where the decision 

maker chooses from making an early inspection (to avoid dependence on condition monitoring and be 

able to make decisions earlier by not having to look for a responsive supplier), responsive supplier (in 

case of last minute orders due to insufficient inventory in the remanufacturing unit) and condition 

monitoring (which would give precise information of the outcome of remanufacturing). His results 

suggested that condition monitoring would be useful in the case of high yield variance and high repair 

and inventory costs. Ferrer and Ketzenberg [3] also examined procurement decisions subject to yield 

information and supplier lead time. They developed four decision models to evaluate the impact of 

these factors and indicated that for products with few parts, better yield information is quite valuable 

whereas increasing supplier responsiveness provides trivial returns. Ryan, Padakala & Wu [4] have 

assessed the value of condition monitoring in replacement under the proportional hazards model for 

product life. They showed how frequent monitoring of the product decreases the cost of the optimal 

replacement policy, and this cost decrease justifies the investment in information and communication 

technology required for frequent monitoring.   

Condition information allows better decisions concerning the future of the product – whether to 

replace it immediately or continue to use it. There has been plentiful research on optimal repair and 

replacement policies for deteriorating systems including many studies that stress condition 

monitoring. Earlier research revolved around optimal replacement and inspection policies to maintain 

a system subject to deterioration. Ohnishi et al. [17] and Luss [18] studied a Markovian deteriorating 

system and derived an optimal policy for the system to minimize the total long-run average cost. The 
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condition information of the system was assumed known only through inspections. The optimal 

policy included scheduling of future inspections and making replacement decisions based on the 

condition information that minimizes the total cost. These are situations where the inspection process 

yields the precise condition information. Research has been done on systems in which the condition 

information available is only probabilistically related to the actual internal state of the system. 

Smallwood and Sondik [19], Satia and Lave [20] and Ellis et al. [21] studied the optimal maintenance 

policies for such systems. The optimal policy describes when to inspect and when to repair so as to 

minimize the long-run cost. The system to be controlled is characterized as a Markov decision 

process. There are numerous research papers on optimal condition-based maintenance policies with 

partial or imperfect condition information [24-27]. Research has further been extended to systems 

with fixed inspection intervals to monitor the condition. Barbera et al. [22] discuss a condition based 

maintenance model with exponential failures, and fixed inspection intervals. The condition of the 

equipment is monitored at equidistant time intervals and if the variable indicating the condition is 

above a threshold an instantaneous maintenance action is performed. Chiang and Yuan [23] propose a 

state-dependent maintenance policy for a multi-state continuous-time Markovian deteriorating 

system. Under the maintenance policy, the system is inspected at each period to identify the current 

state and then the action is chosen: do-nothing, repair and replacement. In this study, we adopt the 

replacement policy derived by Makis and Jardine [5]. They examine a replacement problem for a 

system subject to stochastic deterioration. They describe a case where upon failure of the system, it is 

replaced by a new one and a failure cost is incurred. And if the system is replaced before failure a 

smaller cost is incurred. They use Cox’s proportional hazards model to describe the failure rate of the 

system and specify an optimal replacement policy which minimizes the long-run expected average 

cost per unit time. This replacement policy, proven optimal by Makis and Jardine, is applied to our 

model to maintain the fleet of servicized products. Following the same replacement policy, Wu and 
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Ryan [6] have further extended the computations for the optimal replacement rates to an arbitrary 

number of states. 

As much as companies are trying to extensively perform remanufacturing, it cannot satisfy the entire 

demand. Hence, remanufacturing mostly operates together with the manufacturing process in order to 

fill in the gaps. Some recent literature focuses on such manufacturing/remanufacturing hybrid systems 

and highlights the complexities involved in satisfying the demand, primarily focusing on the 

inventory management. Van der Laan et al. [10] focus on the production planning and inventory 

control in hybrid systems where manufacturing and remanufacturing operations occur simultaneously.  

They compare the traditional systems without remanufacturing to PUSH and to PULL controlled 

systems with remanufacturing, and derive managerial insights into the inventory related effects of 

remanufacturing. Ying and Zu-Jun [11] propose two models to minimize the total cost per time unit 

for ordering remanufacturing and manufacturing lots and holding returned and new/remanufactured 

items in stock. They determine the optimal lot sizes for the manufacturing of new items and the 

remanufacturing of returned items in a hybrid manufacturing/remanufacturing system. Kiesmuller 

[12] derives a new approach for controlling a hybrid stochastic manufacturing/remanufacturing 

system with inventories and different leadtimes.  

The study of hybrid systems has drawn attention due to the complexities involved in the coordination 

between the remanufacturing and manufacturing process. More importantly, the management of 

inventory and the coordination of production decisions have been heavily studied and discussed over 

the past few years. Liu et al. [13] deal with the inventory control problem for the hybrid production 

system. In their model, the global serviceable inventory is managed by the (s, S) continuous review 

replenishment policy. The changes of inventory state under the stochastic demand and product returns 

are illustrated with the Markov quasi-birth-death (QBD) processes and the hybrid inventory system is 

formulated as a Markov decision model. Aras et al. [14] also follow a continuous review base stock 
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policy in managing the serviceable inventory in their model. They focus their study on the stochastic 

nature of product returns and in particular, the variability in the condition of the returns. They present 

an approach for assessing the impact of quality-based categorization of returned products and the 

incorporation of returned product quality in the remanufacturing and disposal decisions. They also 

show that prioritizing higher quality returns in remanufacturing is, in general, a better strategy and we 

follow this strategy in our model. However, since the fleet in our system is condition monitored, the 

inspection stage is eliminated. 

To summarize, this thesis studies the inventory management in a manufacturing/remanufacturing 

hybrid system. There is a fleet of servicized products maintained by the replacement policy proved 

optimal by Makis and Jardine (1992). And, the inventory is managed by a continuous review base 

stock policy as described in Aras et al. (2004). A detailed description of the model and the 

assumptions are given in the next chapter. 
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3. MODEL INTRODUCTION AND NOTATION 

3.1 Model description 

 In this thesis, we consider a fleet of products in service. The objective is to ensure that each 

client has a working product available at all times. The products are monitored fully at 

discrete intervals and the condition information is used in making replacement decisions. It is 

assumed that the life of the product follows the Proportional Hazards Model [15].  

A proportional hazards model consists of two parts: the underlying hazard function, 

describing how hazard changes over time and the effect parameters, describing how hazard 

relates to other factors. In the proportional hazards model, it is assumed that effect parameters 

multiply hazard and it is possible to estimate the effect parameters without any consideration 

of the hazard function. We use the proportional hazards model to describe the failure rate of 

the system. 

In our model, the failure rate of the system depends both on the age of the system and on the 

values of a diagnostic stochastic process Z. It is assumed that the system deteriorates 

continuously over time and there is a positive probability of failure at every instant. The 

transition times and thus the replacement decisions are dependent on the present state and 

action taken. The state of the system is defined by the value of Z; we confine our attention to 

a two-state case where Z can assume the values {0, 1}. We assume that the values of the 

process Z are available only at discrete time points called decision epochs and all replacement 

decisions are made only at these points. The product can be preventively replaced only at 

these decision instants. However, in case of failure, the replacement is made immediately. All 

failed products are discarded. When a product is taken out of service due to replacement or 

failure, it is replaced immediately with a new or remanufactured product. The condition of 
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the product is monitored and the condition monitoring equipment gives us the value of Z  at 

discrete intervals. All replacement decisions are made based on this condition information at 

each decision epoch. 

We study a way to efficiently maintain the stock of ‘new’ products in order to ensure the 

client has a working product available at all times. The stock of serviceable products is 

managed by a simple continuous review base stock policy. This policy aims at keeping the 

inventory position at the base stock level x . This inventory position would include the 

serviceable inventory of remanufactured products, the Work-in-progress inventory (products 

being remanufactured) and all the outstanding manufacturing orders. And each time a 

demand is served from the serviceable inventory, a returned product is pulled into the 

remanufacturing process. The serviceable inventory is replenished by either remanufacturing 

the replaced product or manufacturing a new one.   

The system considered is a joint manufacturing and remanufacturing system with three 

inventories. The remanufactured products are stored in the serviceable inventory, and the 

preventively replaced products are stored in one of the two remanufacturable inventories 

based on their state. The preventively replaced products are categorized into two groups 

based on the remanufacturing effort needed to bring them back to ‘as good as new’ condition. 

The products requiring less remanufacturing effort are grouped as Type 0 products and the 

remaining lower quality products are categorized as Type 1. The flow of products through the 

system is shown in Figure 3.1. Since the fleet of products is monitored from time to time, the 

condition of the product is known at the time of replacement. Therefore the product is readily 

categorized without the need of any further inspection and sent to either the Type 0 inventory 

or the Type 1 inventory based on its quality (or condition). 
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The priority is to satisfy the customer demand. This is done from the stock of remanufactured 

products first and manufacturing is considered viable only when the serviceable inventory is 

unable to satisfy the demand. The serviceable inventory is managed by a simple continuous 

review base stock policy which aims at maintaining the inventory position at least at a base 

stock level x at all times. Whenever the inventory position drops below x, i.e., when a demand 

is served from the serviceable inventory, preventively replaced products are pulled into the 

remanufacturing process for remanufacturing. 

 

 

 

 

 

 

 

Figure 3.1: The manufacturing/remanufacturing hybrid system with categorized inventories 

The serviceable inventory position is always maintained at a base stock level x and the 

disposal decisions of Type 0 and Type 1 returns are controlled by disposal levels 0Q  and 1Q , 

respectively. The disposal levels determine the maximum number of items that can be held at 

the storage facilities prior to remanufacturing. Any product returned after the associated 

remanufacturable inventory reaches its disposal level is discarded. To focus on optimizing x, 

we try different ways to reduce the effect of these disposal levels in our model (Chapter 5). 
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Since there are two remanufacturable inventories, when there is a need for a product to be 

pulled into the remanufacturing process, there is some flexibility. That is, the priority can be 

given to either Type 0 products or Type 1 products to be remanufactured. Aras et al. describe 

the Type 0-first strategy as pulling the Type 0 products first whenever a demand occurs. Only 

when the Type 0 inventory is zero, we begin to pull Type 1 products into the remanufacturing 

process. The Type 1-first strategy is a mirror image of the Type 0-first in terms of its 

priorities. Aras et al. [14] proved that the Type 0-first strategy is the better of the two 

strategies. Under Type 0-first strategy, more of high quality returns are remanufactured, 

which results in significant reductions in remanufacturing cost as well as WIP and serviceable 

inventory holding cost and further more the shorter leadtime enables faster satisfaction of 

customer demand and eventual reduction in the manufacturing costs.  Therefore we adopt this 

strategy in this study. It is also possible that both Type 0 and Type 1 inventories are empty 

which means that from that point on, every demand would result in an outstanding 

remanufacturing order. All future replacements are then processed immediately as they 

arrive, irrespective of their type.  

Also, the remanufacturing leadtimes for Type 0 and Type 1 products differ because the 

remanufacturing effort required for the two product types varies. Type 0 products require less 

remanufacturing effort to bring them to the “as good as new” condition. This means,    (i) 

Type 0 average remanufacturing leadtime is shorter; (ii) Type 0 unit remanufacturing cost is 

lower; and (iii) Type 0 unit disposal cost is equal to or lower than that of Type 1. The 

customer demand that cannot be satisfied immediately from serviceable inventory is satisfied 

from the manufacturing plant. Also, the inventories have holding costs based on their value, 

i.e., the holding cost for the products that are yet to be remanufactured is less than the holding 

costs of the remanufactured products.  
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To summarize, the model in this thesis uses two policies – replacement policy and inventory 

policy. The optimal replacement policy minimizes the overall cost per unit time and 

formulation by Makis and Jardine enables us to determine the overall replacement rate and 

failure rate and also the preventive replacement rates for each state of the system. The 

inventory model uses the replacement and failure information to optimize the base stock level 

of the serviceable inventory in order to minimize the long-run average cost per unit time.  

 

 

 

 

 

Figure 3.2: Relationship between the replacement model and the inventory model 

 The Figure 3.2 shows the decisions from each model used in the other. The overall 

replacement rate (r) and the preventive replacement rates (r0, r1) are calculated from the 

formulation used in the replacement model. And, these rates enable the inventory decisions. 

In turn, the remanufacturing (replacement) cost (C) and the additional cost to manufacture a 

new product (K) are used from the inventory model to make replacement decisions. There is a 

mutual coordination between the two models which helps make optimal decisions for the 

system. 

 

 

Replacement Model 

Inventory Model 

r, r0, r1 C, K 
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3.2 Assumptions 

We assume the service provider has a fleet of products currently in service by clients and an 

inventory of serviceable products to be managed in order to satisfy the demand. In addition, 

we assume:  

(i) The service provider is responsible for ensuring that the client always has a product 

available in working order. 

(ii) The time to failure of the product follows the proportional hazards model; the product 

can be preventively replaced only at an observation epoch but must be replaced 

immediately if it fails between observation epochs.  Replacement is instantaneous. 

(iii) The continuous time Markov chain Z, which describes a product’s condition, is a 

pure birth process, i.e., whenever a transition occurs, the state of the system always 

increases by one. If the system has n states, the state n-1 is absorbing. This thesis 

considers a two-state system. 

(iv) When a product is replaced, priority is given to satisfying the client’s demand with 

remanufacturing; manufacturing would be viable only when remanufacturing is not 

possible. This is based on the conventional wisdom that remanufacturing is cheaper 

than manufacturing. 

(v) Manufacturing is instantaneous. This thesis does not consider the leadtime associated 

with the manufacturing process. Instead, an aggregate manufacturing cost m is 

assumed to be incurred that includes all the material, production, inventory and 

possible back-ordering (or lost sales) costs. 

(vi) All preventive replacements are categorized and stored in one of the two 

remanufacturable inventories based on their state (quality); Type 0 represents higher 

quality products (or products that require less remanufacturing effort in terms of 
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leadtime and cost) and Type 1 represents the remaining lower quality products. We 

give priority to Type 0 products first whenever there is a demand. 

3.3 Notation 

We assume the following notation: 

Input parameters 

0
( )h ⋅   : Baseline failure rate 

( )ψ ⋅   : A positive function dependent only on the state of the system 

∆   : Monitoring interval 

N   : Number of products in the fleet 

C   : Average cost of remanufacturing a preventively replaced product 

K   : Additional cost to manufacture a new product 

0 1,µ µ   : Remanufacturing processing rates 

0 1,δδ   : Unit disposal costs 

h   : Remanufacturable inventory holding cost for Type 0 and Type 1 products 

0 1
,

s s
h h   : Unit serviceable inventory holding costs 

0 1
,

w w
h h   : Unit WIP holding costs 

m   : Average manufacturing cost  
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α   : Opportunity cost of capital 

Intermediate parameters 

The following parameters play an intermediate role in obtaining the output. 

kz   : Condition of the system at time point k∆ after the last replacement 

T   : Time to failure of the product 

( , , )kR k Z t  : Survivor function given the age k∆ and condition kZ  

g   : Optimal expected average cost of the replacement policy per unit time 

dT   : Replacement time associated with expected average cost d  

ik ∆   : Replacement time associated with specific condition i  

( ),W j i
 

: Expected residual time to replacement given the age j∆  and 
j

Z i=
 

( , )Q j i  
 : Expected residual time to failure given the age j∆  and 

jZ i=
 

r   : Overall replacement rate 

fr   : Overall failure rate 

pr   : Overall rate of preventive replacements 

0 1,r r   : Replacement rates for products in state 0 and state 1 respectively 

( ,0)M j  : Probability of preventive replacement of the system in state 0 and age j∆  
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( ,1)N j  : Probability of preventive replacement of the system in state 1 and age j∆  

0 1
, II  : Average remanufacturable inventory on-hand per unit time  

s
I   : Average serviceable inventory on-hand per unit time 

0 1,W W   : Average WIP inventory per unit time for Type 0 and Type 1 products 

0 1,R R   : Average number of returned products remanufactured per unit time 

0 1,D D   : Average number of returned products disposed per unit time 

M   : Average number of products manufactured  per unit time 

Output Parameters 

x   : Base stock level of serviceable inventory 

0 1
,Q Q   : Disposal levels of remanufacturable inventories 

0 1
( , , )C x Q Q

 : Long-run average cost per unit time for the inventory policy 

The next chapter explains in detail the proportional hazards model and the procedure adopted 

to solve for the replacement rates and failure rates of the system. Chapter 5 explains in detail 

the inventory model and how we derive at the optimal base stock level for the serviceable 

inventory. 
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4. OPTIMAL REPLACEMENT POLICY 

 

4.1 Summary 

This chapter describes the proportional hazards model and the procedure adopted to calculate 

the rates of replacement and failure. We consider a system which deteriorates continuously 

over time and is subject to failure at any instant. A fleet of products is considered to be in 

service by a service-provider and the product lifetime is assumed to follow the proportional 

hazards model. The failure rate depends on the age of the system and also on the values of 

concomitant variables describing the effect of the environment in which it operates. The 

condition of the product is observed fully and thus the values of the concomitant variables are 

known at discrete time points where the decisions are made. Based on the condition 

information, the product can be preventively replaced only at these decision instants. 

However, in case of failure, the replacement is made immediately. We assume the service 

provider follows a replacement policy that has been proven optimal for the proportional 

hazards model. We describe the method to calculate the overall replacement and failure rates 

as well as the preventive replacement rates for each state. 

4.2 Proportional Hazards Model 

Let { , 0}tZ Z t= ≥
 

be a stochastic (diagnostic) process that reflects the effect of the 

operating environment on the system and thus influences the time to failure of the product. In 

the proportional hazards model, it is assumed that the failure rate of a system is the product of 

a baseline failure rate 0 ( )h ⋅
 
dependent on the age of the system and a positive function ( )ψ ⋅  

dependent only on the value of the concomitant variables (i.e., the product condition).  
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Thus the hazard rate at time t  can be expressed as 

0( , ) ( ) ( ) for 0t th t Z h t Z tψ= ≥  

and the survivor function is given by 

( )0
0

( | ,0 ) exp ( ) ( ) , 0.
t

s sP T t Z s t h s Z ds tψ> ≤ ≤ = − ≥∫  

 

As in [5], it is assumed that condition information is available only at time points 0, , 2 ,...∆ ∆

in a given replacement cycle, and we let jZ  be the condition at time point j∆ after the last 

replacement. Although condition information is available only at integer multiples of ∆ , tZ  

may shift among its discrete values at any time.  For simplicity, it is assumed that tZ  is a 

two-state continuous time Markov chain that starts after each replacement in state 0 and 

moves to absorbing state 1 in amount of time that is exponentially distributed with rate q . 

Wu and Ryan [6] show how to extend these computations to an arbitrary number of states. 

 

Then, for [0, ]t ∈ ∆ , we have the survivor function  

( )1 0( | , ,..., ) exp ( ) ( ) ( , , ).
j t

j s j
j

P T j t T j Z Z h s Z ds R j Z tψ
∆+

∆
> ∆ + > ∆ = − ≡∫  

For each value of Z, we can specify the survivor function as 

0

0

0 0 0 00

0

( ,0, ) exp ( ) ( )

exp (0) ( ) (1) ( )

exp (0) ( )

j t

s
j

t j s j t

j j s

j tv t

j

R j t Z h s ds

h u du h u du v s v ds

e h u du

ψ

ψ ψ

ψ

∆+

∆

∆+ ∆+

∆ ∆+

∆+−

∆

 
 
 

 
 
 

 
 
 

= −

= − − −

+ −

∫

∫ ∫ ∫

∫
 

0 .exp (1) ( )( ,1, )
j t

j
h s dsR j t ψ

∆+

∆

 
 
 
−= ∫

      …(4.1)  
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4.3 Optimal Replacement Policy 

When a product is taken out of service, it is replaced immediately from the stock.  The stock 

is replenished by either remanufacturing the replaced product or producing a new one.  Thus, 

we consider C  to include the cost of remanufacturing a product that has been replaced before 

failure and K  to include the additional cost to manufacture a new one.  The purpose of 

monitoring is to reduce the failure rate and in turn reduce the average cost per unit time. The 

expected rate of preventive replacements in a system with condition monitoring would be 

higher than in the system with age-based replacements. Also, the failure rate is comparatively 

lower in a system with condition monitoring. 

The objective is to calculate the replacement rates for each value of Z using the replacement 

policy by Makis and Jardine [5]. The value of Z is available only at observation epochs and at 

each of these decision instants, there are two possible actions – replacement or non-

replacement. A state is defined as (j, z), where j is the number of monitoring intervals since 

the last replacement and 
j

z Z=  is the condition of the product of age j∆.  Decision 0 denotes 

immediate replacement, and decision +∞ corresponds to non-replacement (i.e., wait and see).  

Makis and Jardine (1992) provide the details of computing the optimal policy for this system. 

They show that the optimal replacement policy δ  is a non-increasing function of state and is 

given by 

0
 if 1 ( , , ) ( , , )

( , )  

0 otherwise.

K R j z g R j z t dt
j zδ

∆  +∞ − ∆ <  = 


∫

  …(4.2)

 

Here, the computation of the optimal policy parameters for this system is shown.  If the value 

of g were known and no failure would occur, then the optimal replacement time for a specific 

condition z would be j∆ , where j is the minimum integer that satisfies the inequality: 
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( )
0

1 ( , , ) , ,K R j z g R j z t dt
∆

 − ∆ ≥  ∫     …(4.3)
 

According to Makis and Jardine (1992), g can be found as a fixed point.   

We can define 

( ) { }( ) min ,
d d

d C KP T T E T Tφ    = + ≥       …(4.4)
 

For any
0

0x ≥ , let ( )1n nx xφ −= , for n = 1, 2 … . Then, lim n
n

x g
→+∞

= .  

4.3.1 Fixed Point Algorithm 

From [4], the fixed-point algorithm is described as below 

Step 1:  Initialize 0n = and 0g g=  with an arbitrary positive value. 

Step 2:  For nd g= , use (4.3) to find the replacement time 
i

j ∆  associated with the specific 

condition i , i.e.,  

{ }0
min 0 : 1 ( , , ) ( , , ) , 0,1

i
j j K R j i d R j i t dt i

∆

 = ≥ − ∆ ≥ =  ∫  

Step 3:  Use the replacement policy obtained in Step 2 and Equation (4.3) to calculate

1 ( )nng gφ+ = . 

Step 4:  If 1 nng g+ = , stop with * ng g= ; otherwise, set 1n n← +  and go to Step 2. 

In order to apply the algorithm, it is necessary to compute ( )dP T T≥  and { }min , .
d

E T T    
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For 0j ≥  and i S∈ ,  

( ) { } ( ), min , | ,
d

W j i E T T j j i = − ∆   

which is the expected residual time to replacement given that the age of the system is j∆  

and 
jZ i= . Then, 

( ) { } ( )0,0 min , 1
d r

W E T T λ ′ = = ∆      …(4.5)
 

where 
r

λ ′ ( )∆
 
is the preventive replacement rate based on the monitoring interval .∆  

Similarly,  

( )( , ) | ( , )dQ j i P T T j i= ≥  

given that the age of the system is j∆  and 
jZ i= .  

Then, 

   
( )(0,0) .dQ P T T= ≥

              …(4.6)
 

For cases where Z does not change state after some time v, the density of the time of failure, 

T, is defined as 

( ) ( ) ( )( )0, exp , 0,1
t

i
v

d
f v t i h u du i

dt
ψ = − − =

  ∫  

given
t

Z i=  for all t v≥ . 

The procedure to obtain ( )0,0W  and (0,0)Q  recursively [4] is given in Section 4.3.2. 
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4.3.2 Procedure to compute the expected time to replacement 

Let jX  be the time spent by the process in state j before transiting into state j+1. Then, jX  is 

exponentially distributed with rate, say, jv . 

The residual time to replacement given the current state of the system as zero, 

( ) { } ( ), 0 min , ,0 .
d

W j E T T j j = − ∆   

The survivor function of T  conditioned on j∆  and 
kZ  is 

( )1 0( | , ,..., ) exp ( ) ( ) .
j t

j s
j

P T j t T j Z Z h s Z dsψ
∆+

∆
> ∆ + > ∆ = −∫  

Let TR=T-j∆. Then for a given t, the survival probability is 

0 .( | , ) ( | , ) exp ( ) ( )
j t

sj jR j
P T t j Z P T t j j Z h s Z dsψ

∆+

∆

 
 
 

> ∆ = > + ∆ ∆ = −∫  

The residual time to replacement varies depending on the current state of the system and also 

on the amount of time the system spends in a particular state. Let the current state of the 

system be zero. Then,  Xo  is the time spent in state zero before transition to state 1.  

A. If 0X s= < ∆ , that is if the system changes its state before the next decision epoch,  

( )
( )

 if 
, 0

1,1  if 

R R

R

T T
W j

W j T





≤ ∆
=

∆ + + > ∆
 

(i)  0 t s< ≤  

( ) ( )0 0( , ) ( ) 1 exp 0
j t

R
j

F j t P T t h u duψ
∆+

∆

 
 
 

= ≤ = − − ∫  
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(ii) s t< ≤ ∆  

  
( ) ( ) ( ) ( )1 0 0( , ) ( ) 1 exp 0 1

j s j t

R
j j s

F j t P T t h u du h u duψ ψ
∆+ ∆+

∆ ∆+

 
 
 

= ≤ = − − −∫ ∫
 

 

(iii)  t > ∆  

2 1( , ) ( ) ( , )RF j t P T t F j t= ≤ =
 

 Putting the above equations together, 

 

B. If 0X s= ≥ ∆ , that is, if the system does not change its state for the entire monitoring 

interval 

( )
( )

 if 
, 0

1,0  if 

R R

R

T T
W j

W j T





≤ ∆
=

∆ + + > ∆
 

Therefore,  

( ) ( )0 0 0
0

( , 0) | ( , ) ( ( 1,0))(1 ( , ))W j X s td F j t W j F j
∆

= ≥ ∆ = + ∆ + + − ∆∫
 

Combining A and B, we have 

( ) ( )

( )

( ) ( )

0

0

0

0 0 1 1
0 0

0 0 0
0

0 0 1 10 0

( , 0) ( , ) ( , ) ( ( 1,1))(1 ( , ))

( , ) ( ( 1, 0))(1 ( , ))

( , ) ( , ) ( ( 1,1))(1 ( , ))

sv s

s

v s

s
v s

s

W j v e td F j t td F j t W j F j ds

v e td F j t W j F j ds

v e td F j t td F j t W j F j ds

e

∆ ∆−

∞ ∆−

∆

∆ ∆−

−

 
 
 

 
 
 

 
 
 

= + + ∆ + + − ∆

+ + ∆ + + − ∆

= + + ∆ + + − ∆

+

∫ ∫ ∫

∫ ∫

∫ ∫ ∫

( )0

0 0
0

( , ) ( ( 1, 0))(1 ( , ))
v

td F j t W j F j
∆∆  

 
 

+ ∆ + + − ∆∫
 …(4.7) 

( ) ( ) ( )0 0 1 1
0

( ,0) | ( , ) ( , ) ( ( 1,1))(1 ( , ))
s

s
W j X s td F j t td F j t W j F j

∆
= < ∆ = + + ∆ + + − ∆∫ ∫
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For example, let us assume 0
( ) 2h u u= , ( ) exp( )z zψ = , 1.∆ =   

Then it follows 

( ) ( ) 2
0(0, ) 1 exp exp 0 2 1 exp( 2 )

j t

j
F t u du t tj

∆+

∆

 
 
 

= − − = − − − ∆∫  

( ) 2
0 0( , ) ( , ) 2( )exp( 2 )

t
F j t f j t t j t tj

∂

∂
= = + ∆ − − ∆

             

( ) ( ) ( ) ( )

( )1 1 1

1 0 0

2 2

( , ) 1 exp 0 1

1 exp 2 ( 1)( 2 )

j s j t

j j s
F j t h u du h u du

e t e tj e s sj

ψ ψ
∆+ ∆+

∆ ∆+

 
 
 

= − − −

= − − − ∆ + − + ∆

∫ ∫
 

( ) ( )1 1 1 12 2
1 1( , ) ( , ) 2 ( )exp 2 ( 1)( 2 )

t
F j t f j t e t j e t e tj e s sj

∂

∂
= = + ∆ − − ∆ + − + ∆

 

                 …(4.8) 

From (4.7), 

0

0

0 0 1 1
0 0

0 0
0

( , 0) ( ( 1,1))(1 ( , ))

( ( 1,0))*(1 ( , ))

sv s

s

v

W j v e tf dt tf dt W j F j ds

e t f dt W j F j

∆ ∆−

∆− ∆

 
 
 

 
 
 

= + + ∆ + + − ∆

+ + ∆ + + − ∆

∫ ∫ ∫

∫
  …(4.9)

 

where  

0 01 ( , ) ( , )F j f j t dt
∞

∆
− ∆ = ∫ , 

1 11 ( , ) ( , )F j f j t dt
∞

∆
− ∆ = ∫  

When the system is in state 1, 

( )
( )

 if 
,1

1,1  if 

R R

R

T T
W j

W j T





≤ ∆
=

∆ + + > ∆
 

( ) ( )1
1 0( , ) ( ) 1 exp 1

j t

R
j

F j t P T t h u duψ
∆+

∆

 
 
 

= ≤ = − − ∫  
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( )1 1 2
1 1( , ) ( , ) 2 ( )exp( ( 2 ))F j t f j t a t j a t tj

t

∂
= = + ∆ − + ∆

∂
 

1 1
1 1

0
( ,1) ( , ) ( ( 1,1))(1 ( , )W j tf j t dt W j F j

∆
= + ∆ + + − ∆∫

                            …(4.10) 

4.3.3 Procedure to compute the probability that replacement is due to failure 

Let the current state of the system be zero. Then the residual time to failure, given the age 

j∆ and state zero can be defined as 

( ) ( )( ), 0 , 0
d

Q j P T T j= ≤
 

Let RT T j= − ∆ . 

1.  If 0T s= < ∆ , then  

1
( ,0)

( 1,1)

R

R

if T
Q j

Q j if T





≤ ∆
=

+ > ∆
 

2.    If 
0

T s= > ∆ , then 

1
( ,0)

( 1, 0)

R

R

if T
Q j

Q j if T





≤ ∆
=

+ > ∆
 

Therefore, 

0

0

0 0 1 1
0 0

0 0
0

.

( ,0) ( , ) ( , ) ( 1,1)(1 ( , ))

( , ) ( 1,0)(1 ( , ))

s
v s

s

v

Q j v e f j t dt f j t dt Q j F j ds

e f j t dt Q j F j

∆ ∆−

∆− ∆

 
 
 

 
 
 

= + + + − ∆

+ + + − ∆

∫ ∫ ∫

∫
  …(4.11) 
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When the current state of the system is 1, 

( )
( )

1 if 
,1

1,1  if 

R

R

T
Q j

Q j T





≤ ∆
=

+ > ∆
 

Therefore, 

1 1
1

0
( ,1) ( , )

k j

Q j f j t dt
∆− ∆

= ∫     …(4.12) 

For each value of Z, we can also derive the survivor function equation as below 

 0 0
1 0 00

( ,0, ) 1 ( , ) 1 ( , )
t v s v t

R j t F j t v e ds e F j t
− −   

   = − + −∫  

1
1( ,1, ) 1 ( , )R j t F j t−=

 

4.3.4 Procedure to calculate the replacement and failure rates 

The point of interest is to calculate the failure rate, the overall replacement rate and also the 

rates of preventive replacement for each value of Z. From the recursive process described 

above, we have the values of ( )0,0W  and (0,0)Q  which are the times to preventive 

replacement and failures, respectively, for a newly replaced system. 

The overall replacement rate can be defined as the reciprocal of the replacement time 

1

(0,0)
r

W
=

 

The failure rate can be defined as the ratio of failure time to the replacement time 

(0,0)

(0, 0)f

Q
r

W
=  



www.manaraa.com

 

30 

 

And the rate of preventive replacements 
1 (0,0)

(0, 0)
p f

Q
r r r

W

−
= − =  

For state i , let the replacement rate be ir , then pi
i

r r=∑  

Let  ( ) ( ),0         0 |   M j P Preventively replace when Z is in state j=  

( ) ( ),1         1|   N j P Preventively replace when Z is in state j=  

where the age of the system is j∆. 

Then, the replacement rate for 0Z = ,  

0 (0,0) / (0,0)r M W=  

and the replacement rate for 1Z = ,  

1 (0,0) / (0,0)r N W=  

The recursive procedure which could be applied to obtain (0,0)M , (0, 0)N is described 

below.  

For a given ∆ , we calculate the preventive replacement times 0j and 1j from the algorithm in 

Section 4.3.1. 

Computation of the replacement rate for state 0: 

For state zero, we can define 

0( ,0) 1M j for j j= ≥  

( ,1) ( , 2) 0,M j M j j= = ∀  
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For  j < jo, the calculation of ( ,0)M j  is described below. 

1.     If 0 0S s= ≥ ∆  

( )
( )

0 if 
, 0

1,0  if 

R

R

T
M j

M j T





≤ ∆
=

+ > ∆
 

( )0 0
0 0 0( ,0) | ( 1,0)(1 ( , ))M M j S M j F j= ≥ ∆ = + − ∆

 

 2.     If 0 0S s= < ∆  

( , 0) 0M j =  

Hence,          

0 0
0 0 0( , 0)

v s
M j v e M ds

∞ −

∆
= ∫     …(4.13)

 

Computation of the replacement rate for state 1 

For state 1, we can describe the computation of (0,0)N as below 

0( ,0) 0N j for j j= ≥  

1( ,1) 1N j for j j= ≥  

For j<jo, the calculation of N( j,0) is described below. 

1.     If  0 0S s= ≥ ∆  

( )
( )

0 if 
,0

1,0  if 

R

R

T
N j

N j T






≤ ∆
=

+ > ∆
 

( )0 0
0 0 0

( ,0) | ( 1,0)(1 ( , ))N N j S N j F j= ≥ ∆ = + − ∆  
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2.     If 0 0S s= < ∆ , 1 0 1S X X= + > ∆  

( )
( )

0 if 
, 0

1,1  if 

R

R

T
N j

N j T





≤ ∆
=

+ > ∆
 

( ) 0
0 0 1 1

0
1 ,( ,0) | ( 1,1)(1 ( , ))N s S NN j s j F j< ∆ <= = + − ∆  

3.    If 1 1S s= ≤ ∆  

( ,0) 0N j =  

Therefore, 

0 0 0 1 0( )0 0
0 0 0 0 1 00

( ,0)
v s v s v s

N j v e N ds v e e N ds
∞ ∆− − − ∆−

∆
= +∫ ∫    …(4.14)

 

For 1j j< , the calculation of ( ,1)N j is described below. 

1.    If  1
X r= ≥ ∆  

( )
( )

0 if 
,1

1,1  if 

R

R

T
N j

N j T






≤ ∆
=

+ > ∆
 

( )1 1
0 1 0

( ,1) | ( 1,1)(1 ( , ))N N j X N j F j= ≥ ∆ = + − ∆  

2.    If 1
X r= < ∆ ,  

( ,1) 0N j =  

Therefore,          

1 1
0

( ,1)
v

N j e N
− ∆=

                                                     …(4.15)
 

The above recursive procedure, contributed by Xiang Wu (personal communication, July 22, 

2008), is used to obtain the values of the replacement rates necessary for the management of 

inventory in our system.  
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4.4 Numerical Example 

Let us consider a numerical example to calculate the replacement rates for each value of Z . 

In the replacement model, K  should represent the difference in the manufacturing and 

remanufacturing costs of a product. In our model, we have two types of products with 

remanufacturing costs 0 3c =
 
and 1 4.5c =

 
and manufacturing cost 15m = . The incremental 

failure costs are 0 0K m c= −
 
and 1 1K m c= −  respectively. The formulation to calculate the 

replacement rates is for a single product type and hence we consider K  to be the average of 

0K
 
and 1K  weighted by the probabilities of Type 0 product returns and Type 1 product 

returns respectively. These probabilities are obtained by solving for the preventive 

replacement rates for each state. We have the preventive replacement rate for Type 0 as ro 

and for Type 1 as r1. And the overall preventive replacement rate is given by rp=r0+r1. Now, 

the probability of obtaining a Type 0 return would be p0=r0/rp and the probability of 

obtaining return would be  p1=r1/rp.  

But, in order to calculate the replacement rates, we need the value of K. We start off with an 

approximate and assumed value and move back and forth, following recursive iterations to 

obtain at the accurate weighted average of 0K
 
and 1K as shown in Table 4.0. Similarly, C  is 

the weighted average of the replacement costs 0c
 
and 1.c  We first assume the probabilities 

p0
’=0.3 and p1

’=0.7. After iteration 1, we obtain the actual probability values for those values 

of C and K. By using those values, we calculate C and K again and use them in the second 

iteration. We continue the recursive iterations till the assumed values and the actual values 

are the same. 
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Table 4.0: Recursive iterations to obtain C and K 

p0
'
 p0

'
 C K r0 r1 p0 p1 

0.3 0.7 4.2000 10.8000 0.2989 0.6198 0.3253 0.6747 

0.3253 0.6747 4.0120 10.9880 0.3747 0.6645 0.3606 0.6394 

0.3606 0.6394 3.9592 11.0408 0.3747 0.6645 0.3606 0.6394 

0.3606 0.6394 4.0000 11.0000 0.3747 0.6645 0.3606 0.6394 

 

According to the procedure, we should stop at values C=3.9591 and K=11.0408. But, we 

tested for round of values C=4 and K=11 and obtained the same probabilities. Hence, for this 

example, we have 11K =  and 4C = . Also, let 

0 ( ) 0.7h u u= ; 0.1∆ = ; ( ) zz eψ =  

Let us assume the product’s condition follows a Markov chain with two states {0,1} and the 

transition probability matrix 
0.45 0.55

 0     1
P

 
=  
 

 from which it follows that 0 ln(0.45)v = − .  

Let us initialize 11
o

g =  (arbitrary) and illustrate the first iteration for finding the g . 

1. Initialize 0n = and 11
o

g =  

2. For 
0

d g= , and 0,1i =  

{ }
{ }

0
0

1
0

min 0 : 1 ( ,0, ) ( ,0, ) 10

min 0 : 1 ( ,1, ) ( ,1, ) 4

j j K R j d R j t dt

j j K R j d R j t dt

∆

∆

 = ≥ − ∆ ≥ = 

 = ≥ − ∆ ≥ = 

∫

∫
 

3. Using the replacement policy obtained above, we then calculate 1 0( )g gφ=
 
 

( ) { }
00( ) min ,

og gg C KP T T E T Tφ    = + ≥
     
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In order to calculate 0( )gφ , we need the values of (0,0)W and (0,0)Q  

From equations (4.9) and ( 4.11), we have 

(0,0) 0.7260

(0,0) 0.2455

W

Q

=

=

  

Therefore,  

1 0( ) 9.2571g gφ= =  

The complete results are shown in Table 1. The fixed point procedure converges after two 

iterations at 9.2295g = . 

The overall replacement rate is   
1

1.3773
(0,0)

r
W

= =
                  …(4.16) 

And the failure rate is   
(0,0)

0.3382
(0,0)f

Q
r

W
= =

                  …(4.17) 

Table 4.1: Computation of g using the fixed point algorithm 

n
g  0j  1j  (0,0)W  (0,0)Q  ( )

n
gφ  

11 10 4 0.6955 0.2216 9.2571 

9.2571 11 4 0.7260 0.2455 9.2295 

9.2295 11 4 0.7260 0.2455 9.2295 

 

Therefore, the overall preventive replacement rate is 1.0392p f
r r r= − =  
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Our point of interest is to calculate the preventive replacement rates for state 0 and state 1, 

which are given by 

Replacement rate for 0Z = : 0
(0,0) / (0,0)r M W=

 

Replacement rate for 1Z = : 1
(0,0) / (0,0)r N W=  

From the equations (4.13) and (4.14), we have 

(0,0) 0.2720M =  

(0,0) 0.4824N =  

Therefore,  

      

0

1

  0.3747

  0.6645

r

r

=

=
     …(4.18)

 

The next chapter shows how the above replacement rates are used in calculating the base 

stock level of the serviceable inventory that minimizes the average cost per unit time.  
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5. INVENTORY MANAGEMENT IN HYBRID SYSTEM 

5.1 Summary 

This chapter describes the management of the serviceable inventory in the hybrid system. 

Whenever a replacement occurs, the gap in the fleet needs to be filled with a new product 

from the serviceable inventory. This is done primarily by remanufacturing under the 

assumption that remanufacturing is much cheaper than manufacturing a new product. The 

manufacturing option is considered only when the remanufacturing process is unable to 

satisfy the demand. The product returns are of two types as explained in Chapter 3. All the 

preventive replacements in state 0 are said to be of Type 0 (higher quality) and all the 

preventive replacements that occur in state 1 are said to be of Type 1 (lower quality). And 

each product type has a different inventory to sit in, before being remanufactured. As soon as 

a product is taken out of the fleet, it is sent to its corresponding inventory unless it is failed. 

All failed products are discarded immediately. A numerical example is illustrated to show the 

procedure of determining the optimal base stock level of the serviceable inventory that 

minimizes the long-run average cost per unit time. The decision parameters are the 

remanufacturable disposal levels for Q0 and Q1 and the serviceable inventory base stock level 

x. These are the decision parameters for the base stock model.  

5.2 Base stock policy 

In our system, the demand and returns are modeled as independent Poisson processes with 

rates N r and Nrp respectively. This is an approximation because “demand” is created by 

failures and returns are preventively replaced products and these processes result from the 

policy in Chapter 4. And the demand rate is assumed to be greater than the return rate 

because failed products are discarded. Also, the processing rates required for remanufacturing 
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a higher quality product (
0

µ ) and a lower quality product (
1

µ ) are assumed to have different 

means because the remanufacturing effort required to bring them back to “as good as new” 

condition varies with their quality. This means that the average remanufacturing lead time is 

shorter for higher quality products compared to the lower quality ones
0 1

(1 / 1 / )µ µ< . Also, 

the unit remanufacturing cost for Type 0 products is less as compared to the Type 1 products

0 1( )c c< . 

The two remanufacturable inventories have holding costs ( )h  associated with them, which 

do not vary with the type of the product they are holding. However, the unit holding costs for 

the remanufacturable inventories and the serviceable inventory are different because of the 

difference in the value of the products they store. WIP inventory is considered to have 

approximately 50% value added and the serviceable inventory obviously has all the value 

added. The unit serviceable inventory holding costs for Type 0 and Type 1 products are given 

by 

0 0

1 1

s

s

h h c

h h c

α

α

= +

= +
           …(5.1)

 

where α is the opportunity cost of capital. We also have unit-holding costs for Work-In-

Process (WIP) inventory. At each stage, there are products being processed in the 

remanufacturing unit which haven’t acquired their complete ‘value’ yet and therefore we 

assume that an average product has half of the value-added.  
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Therefore, the WIP holding costs are represented by 

0 0

1 1

/ 2

/ 2

w

w

h h c

h h c

α

α

= +

= +
          …(5.2)

 

The average serviceable holding cost is determined by the composition of the serviceable 

inventory. Thus, 

0 1
0 1

0 1 0 1

s s

s

R R
h h

R R R R
h

   
= +   

+ +       …(5.3)

 

where
0R and 

1R  are the number of returned products remanufactured of Type 0 and Type 1 

respectively. Here 
0R and 

1R  and consequently sh depend on the choice of the decision 

variables 0 1)( , ,x Q Q . The remanufacturing process does not have a limitation on the 

capacity, i.e., there is no waiting time for processing. Any demand that is not satisfied by the 

remanufacturing process is met by resorting to manufacturing with an average manufacturing 

cost of m per unit.  

In our model, we consider the policy variables as the serviceable base stock level x and the 

remanufacturing disposal levels 0Q and 1Q . The objective is to optimize these inventory 

levels (decision variables) so as to minimize the long-run operating cost per unit time of the 

system, 0 1)( , ,C x Q Q , which is represented as 

0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1)( , , w w

s shI hI h I h W h W c R c R D D mMC x Q Q δ δ= + + + + + + + + +
 

          …(5.4)
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5.3 Continuous-time Markov chain representation 

As in [14], we use a continuous-time Markov chain representation for the hybrid system in 

calculating the average cost and determining the optimal policy parameters. The Markov 

chain is then considered to have a five-dimensional state variable denoted as  

0 1 0 1( ) ( ( ), ( ), ( ), ( ), ( ) : 0)X t I t I t W t W t B t t= ≥  

where: 

0 ( )I t : Type 0 remanufacturable inventory at time t; 

1( )I t : Type 1 remanufacturable inventory at time t; 

0 ( )W t : Type 0 WIP inventory at time t; 

1( )W t : Type 1 WIP inventory at time t; 

( )B t : Number of outstanding remanufacturing orders at time t; 

And a finite state space 

0 1 0 1 0 0 1 1 0 1{( , , , , ) : 0,..., , 0,..., , 0,..., , 0,..., , 0,..., }S i i w w b i Q i Q w x w x b x= = = = = =  

The above state space gives us a potentially large number of states but it is important to note 

that not all states are feasible. The conditions below need to be satisfied for a state to exist.  

i. An outstanding order exists only when both the remanufacturable inventories are 

zero. That is, ( ) 0B t > only if 0 0( ) ( ) 0I t I t= = . 
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ii. A continuous review base stock policy is used to manage the serviceable inventory 

which implies that at any instant, the sum of serviceable on-hand inventory, WIP 

inventory and the outstanding remanufacturing orders should equal the base stock 

level s . That is, 0 1( ) ( ) ( ) ( )sx I t W t W t B t= + + + . 

Considering the current state of the system to be 0 1 0 1( , , , , )i i w w b , we study the different 

states the system could go to, in the next time interval and their corresponding transition rates 

(listed in Table 5.1). 

According to Aras et al., the Markov chain is irreducible and ergodic and, therefore, has a 

limiting distribution. In [14], the computation procedure for the limiting distribution, the 

marginal distribution of each state and, therefore, the long-run average system cost is 

described. And, by considering the parameter space large enough to contain the optimal 

solution, we resort to an enumerative search procedure to find the optimal policy 
0 1

( , , )x Q Q  

and the associated optimal cost
*

C . 

The limiting probability is equal to the long-run fraction of time the process is likely to be in 

a particular state. Let ( ),j j Sπ ∈ be the limiting probability of our continuous-time Markov 

chain where 0 1 0 1( , , , , )j i i w w b= . The following system of linear equations can be solved to 

obtain these steady-state probabilities. 

( ) ( )jk kj

k j k j

j q q kπ π
≠ ≠

=∑ ∑  j S∈  

( ) 1
j S

jπ
∈

=∑
     …(5.5) 

where 
jkq represents the infinitesimal transition rate from state j to state k. 
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Table 5.1: Transition rates from state 
0 1 0 1

( , , , , )i i w w b  

To state Condition Rate Event 

    

0 1 0 1
( 1, , 1, , )i i w w b− +  0 0i >  r  Demand 

0 1 0 1
( , 1, , 1, )i i w w b− +  0 10, 0ii = >  r  Demand 

0 1 0 1
( , , , , 1)i i w w b +  0 1 00,i i= =  r  Demand 

0 1 0 1
( 1, , , , )i i w w b+  0 0Qi <  0r  Type 0 returns 

0 1 0 1
( , 1, , , )i i w w b+  1 1Qi <  1r  Type 1 returns 

0 1 0 1
( , , 1, , 1)i i w w b+ −  0b >  0r  Type 0 returns 

0 1 0 1
( , , , 1, 1)i i w w b+ −  0b >  1r  Type 1 returns 

0 1 0 1
( , , 1, , )i i w w b−  0 0w >  0 0w µ  Type 0 remanufactured 

0 1 0 1
( , , , 1, )i i w w b−  1 0w >  1 1w µ  Type 1 remanufactured 

 

It would be informative to understand the probability distribution of each of the state 

variables ignoring the information of the others. Therefore the marginal probabilities are 

calculated as below, and thereby used in estimating the long-run average system cost per unit 

time.  

1 0 1

0 0 1

0 1 0 1

0 1 0 1

( , , , )

1 0 0 1

( , , , )

0 1 0 1

{( , , ): }

{ } ( , , , , )

{ } ( , , , , )

{ } ( , , , , )

i w w b

i w w b

s

w w b w w b x n

P I n n i w w b

P I n i n w w b

P I n i i w w b

π

π

π
+ + = −

= =

= =

= =

∑

∑

∑
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0 1 1

0 1 0

0 1 0 1

0 0 1 1

( , , , )

1 0 1 0

( , , , )

0 1 0 1

( , , , )

{ } ( , , , , )

{ } ( , , , , )

{ } ( , , , , )

i i w b

i i w b

i i w w

P W n i i n w b

P W n i i w n b

P B n i i w w n

π

π

π

= =

= =

= =

∑

∑

∑

    

              …(5.6) 

And from the above marginal probability distributions, we can calculate the following. 

The remanufacturing inventory for Type 0 products: 
0

0

0 0 0 0 0

0

[ ] { }
Q

i

I E I i P I i
=

= = =∑  

The remanufacturing inventory for Type 1 products: 
1

1

1 1 1 1 1

0

[ ] { }
Q

i

I E I i P I i
=

= = =∑  

WIP inventory for Type 0 products:   

0

0 0 0 0 0

0

[ ] { }
x

w

W E W w P W w
=

= = =∑  

WIP inventory for Type 1 products:   

1

1 1 1 1 1

0

[ ] { }
x

w

W E W w P W w
=

= = =∑  

Number of outstanding orders:    
0

[ ] { }
x

b

B E B bP B b
=

= = =∑  

Number of disposed Type 0 products:   0 0 0 0{ }D P I Qγ= =  

Number of disposed Type 1 products:   1 1 1 1{ }D P I Qγ= =  

Number of remanufactured Type 0 products:  0 0 0R Dγ= −  

Number of remanufactured Type 1 products:  1 1 1R Dγ= −  
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On-hand serviceable inventory:    0 1sI x W W B= − − −  

Demand not satisfied by remanufacturing:  { 0}sM P Iλ= =
  

                …(5.7)
 

By calculating all the above terms, we can obtain the cost function as in (5.4). We calculate 

the cost function for different states and thereby obtain the optimal base stock level of the 

serviceable inventory which minimizes the long-run average cost. We consider the parameter 

space large enough to contain the optimal solution and thereby resort to an enumerative 

search procedure.  

5.4 Numerical Example 

The example below illustrates all of the above calculations.  

Let us consider 2 products in the fleet. Therefore, N=2. 

Remanufacturing processing rates: 0 5µ = , 1 2.5µ =  

Holding cost for the remanufacturable inventory: 0.5h =  

Opportunity cost of capital: 0.1α =  

Disposal costs: 0 1 0δ δ= =  

The demand rate of the system would be the overall rate at which the products are being 

replaced. From the calculations in Chapter 4, we have the replacement rate for a single 

product is 1.3773r =  (Eqn. 4.16). For the fleet of 2 products, we have the overall 

replacement rate as Nr = 2.7546. The overall return is the rate at which the products are 

preventively replaced, i.e., rp. In our system, since the products are condition monitored at 
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frequent intervals, we already have the condition information of the product during 

replacement. The return rate for Type 0 and Type 1 products are the preventive replacement 

rates we obtained for state 0 and state 1 in Chapter 4. Therefore, we have the replacement 

rates for a single product as 0 0.3747r = and 1 0.6645r =
 

and the overall replacement 

(return) rates are 0 0.7494Nr =  and 1 1.3290Nr = . 

The first step here would be to solve (5.5) and obtain the steady state probabilities. We 

combine both the equations together as [ ][ ] 0Qπ =  where [ ]Q  is the transition rate matrix 

and [ ]π  is the steady state probability matrix. In order to obtain the probabilities, we need 

[ ]Q  and this is obtained in the following fashion. Each element of the Q  matrix is the 

transition rate of the system from state j  to state k . 

Let us first assume the simplest case where 
0 1

1, 1, 1x Q Q= = = . Now, the state space would 

be 0 1 0 1 0 1 0 1{( , , , , ) : 0,1, 0,1, 0,1, 0,1, 0,1}S i i w w b i i w w b= = = = = = . As mentioned earlier, 

there are a few conditions that need to be satisfied for a state to exist. For example, consider 

the state 0 1 0 1( , , , , ) (0,1,0,0,1)j i i w w b= = . This state cannot exist since it does not satisfy 

the condition which says: 0b >  if and only if 0 1 0i i= = . Let us consider another state 

0 1 0 1( , , , , ) (0,0,1,0,1)j i i w w b= = . This state also cannot exist since it fails to satisfy the 

other condition which says 0 1w w b x+ + ≤ . Thus the state space has thirteen states and the 

possible transitions of the system from its current state are shown in Figure 5.0. 
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Figure 5.0: Transition rates of each state for x=1, Q0=1, Q1=1 
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The transition matrix is obtained from the transition rates given in Table 5.1. The diagonal 

elements of the matrix are the negative of the sum of all the elements of that row. Since we 

know the values of 2.7546r = , 0 1= 0.7494, 1.3290r r= , 0 5µ = , 1 2.5µ =
 

the transition 

matrix is given as below. 

Q = 

-4.8330 2.7546 0 0 1.3290 0 0 0.7494 0 0 0 0 0

0 2.0784 1.3290 0.7494 0 0 0 0 0 0 0 0 0

2.5 0 4.5784 0 0 1.3290 0 0 0.7494 0 0 0 0

5 0 0 7.0784 0 0 1.3290 0 0 0.7494 0 0 0

0 0 2.7546 0 3.5040 0 0 0 0 0 0.7494 0 0

0 0 0 0 2.5 3.2494 0 0 0 0 0 0.7494 0

0 0 0 0 5 0 5.7494 0 0 0 0 0 0.74

−

−

−

−

−

− 94

0 0 0 2.7546 0 0 0 4.0836 0 0 1.3290 0 0
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Solving for the steady-state probabilities, 

1 2 3 4

5 6 7 8

9 10 11 12 13

=0.1127;    =0.1493;    =0.1522;    =0.0328;    

=0.1809;    =0.0623;    =0.0657;    =0.0437;    

=0.0298;    =0.0039;    =0.1214;    =0.0345;    =0.0109

π π π π

π π π π

π π π π π

 

From the steady-state probabilities, we obtain the marginal probabilities as in (5.6) and the 

cost terms from the equations in (5.7). Hence we have the long-run average cost per unit time 

(1,1,1) 28.2446.C =  

This is just a sample calculation for 0 11, 1, 1x Q Q= = = . We similarly calculate the cost 

function for the entire parameter space until we find the optimal solution. Since we do not 
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have an explicit function that could give us the optimal solution, we adopt a search procedure. 

We consider the parameter space large enough to contain the optimal solution and thereby 

obtain our optimal base stock and disposal levels that minimizes the long-run average cost 

per unit time. Table 5.2 shows the costs for different values of 0,x Q
 
and 1Q .  

Table 5.2   Effect of x on cost for 0 1Q Q= (all holding costs included; optimal values in bold) 

x Q0=Q1=1 Q0=Q1=2 Q0=Q1=3 Q0=Q1=4 Q0=Q1=5 

1 28.2446 27.1758 27.0367 27.2262 27.5571 

2 23.3965 22.2917 21.7971 21.545 21.407 

3 22.1275 21.4842 21.177 21.0119 20.9163 

4 21.5984 21.2296 21.0497 20.9529 20.8974 

5 21.3272 21.1137 21.0106 20.9568 20.9272 

6 21.181 21.0591 21.0026 20.9751 20.9616 

7 21.1037 21.0371 21.0091 20.9976 20.9937 

8 21.066 21.0331 21.0223 21.0203 21.022 

9 21.0512 21.0387 21.038 21.0415 21.022 

10 21.0496 21.0491 21.054 21.0603 21.0665 

11 21.0551 21.0612 21.0691 21.0766 21.0832 

12 21.0641 21.0736 21.0825 21.0903 21.0967 

13 21.0744 21.0852 21.0942 21.1016 21.1135 

  

 We assess the cost impact of the disposal levels of remanufacturable inventories by drawing 

a comparison of the optimal costs for each value of Q0 and Q1. Figure 5.1 shows how the 

disposal levels affect the cost function. 
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Figure 5.1: Effect of base stock inventory level x on the cost function (all holding costs included) 

The above plot shows the pattern in which the cost function decreases up to a certain value of 

‘x’ and begins to increase again. For a given disposal level of the remanufacturable 

inventories, that x is said to be optimal. To get a closer picture, the smaller values of x are 

ignored and another plot is drawn for Q0 = Q1 = 1 (Figure 5.2). 
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x=4 at Q0 = Q1 = 5. We can also observe that as Q0 and Q1 increase, the cost decreases. When 

the remanufacturable inventory levels are low, it seems to be optimal to maintain a high 

serviceable inventory level. This is to fill the gap and satisfy the demand. On the other hand, 

if we have higher values of Q0 and Q1, it reduces the need for a high base stock level in the 

serviceable inventory because there will be enough number of products to be remanufactured 

in order to satisfy the demand.  
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From Table 5.2, it can also be noted that as the values of Q0 and Q1 increase, the optimal cost 

decreases. This is because higher Q0 and Q1 means that we always have a product ready to be 

remanufactured whenever demand arises. To be able to satisfy the demand with a 

remanufactured product would minimize the need for manufacturing a new product, and 

therefore minimize the overall cost. Also, according to Type 0-first strategy, higher inventory 

of Type 0 remanufacturable products will decrease the need to remanufacture a Type 1 

product or have an outstanding order and thereby decrease the overall cost.  

 

Figure 5.2: Effect of base stock inventory level x on the cost function for Q0=Q1=1 

 

Our point of interest is the optimal management of the serviceable inventory to minimize the 

cost. Hence, we try to minimize the effect of the remanufacturable inventory disposal levels 
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the costs for the parameter space. We can observe that the optimal base stock level drifts as 

we increase the disposal levels from Q0=Q1=1 to Q0=Q1=24. The cost at the optimal x also 

decreases monotonically as we increase the disposal levels Q0 and Q1 with Q0=Q1. 

Table 5.3: Effect of x on cost when the holding cost h=0 (Optimal values in bold) 

x Q0=Q1=1 Q0=Q1=2 Q0=Q1=3 Q0=Q1=4 

1 27.4594 25.8858 25.2626 24.9792 

2 22.6180 21.2702 20.5800 20.1642 

3 21.2563 20.4386 20.0011 19.7349 

4 20.6242 20.1116 19.8261 19.6488 

5 20.2585 19.9241 19.7329 19.6123 

6 20.0297 19.8061 19.6762 19.5933 

7 19.8814 19.7298 19.6407 19.5835 

8 19.7836 19.6800 19.6187 19.5792 

9 19.7184 19.6474 19.6051 19.5779 

10 19.6749 19.6261 19.5971 19.5784 

11 19.6458 19.6124 19.5926 19.5798 

12 19.6265 19.6037 19.5902 19.5816 

13 19.6137 19.5983 19.5892 19.5834 

14 19.6054 19.5951 19.5891 19.5852 

15 19.6001 19.5933 19.5893 19.5868 

16 19.5968 19.5923 19.5898 19.5882 

17 19.5947 19.5919 19.5904 19.5894 

18 19.5936 19.5918 19.5909 19.5784 

19 19.5929 19.5919 19.5914 19.5798 

20 19.5926 19.5921 19.5919 19.5816 

21 19.5925 19.5923 19.5893 19.5834 

22 19.5926 19.5923 19.5898 19.5852 

23 19.5927 19.5924 19.5904 19.5868 

24 19.5928 19.5926    19.5909 19.5882 

  

The values in Table 5.3 show that higher the inventory, the lower is the cost and lower is the 

base stock level. This trend is similar to the case where the holding cost h=0.5. But, however, 

it can be observed that the cost values are lower as compared to the first case. This is because 
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of the obvious impact of making the holding cost zero. Also, being functions of h, both the 

WIP holding cost and the serviceable inventory holding cost decrease and thereby decrease 

the overall cost function . The plot in Figures 5.3a, 5.3b is drawn to study the behavior of the 

cost function with respect to x. 

 

Figure 5.3a: Effect of base stock inventory level x on the cost function (h=0) for Q0=Q1=1 

 

Figure 5.3b: Effect of base stock inventory level x on the cost function (h=0) for Q0=Q1=4 

19.5922

19.5923

19.5924

19.5925

19.5926

19.5927

19.5928

19.5929

19.593

19 20 21 22 23

Q0=Q1=1

C
o

s
t 

F
u
n
ct

io
n

x 

19.5775

19.5785

19.5795

19.5805

19.5815

19.5825

19.5835

1 2 3 4 5

Q0=Q1=4

C
o

s
t 

F
u

n
ct

io
n

x 



www.manaraa.com

 

53 

 

From the plot, we can observe that for Q0=Q1=1, the serviceable inventory is optimal at x=21 

whereas for Q0=Q1=4, it decreases to  x=9. The costs in Table 5.3 show that it is more 

profitable to have higher remanufacturable inventories. Also, it can be observed that the cost 

at optimal x decreases as the values of Q0 and Q1 increase. However, in realistic situations, it 

is not possible for the remanufacturer to hold a very high number of products without any 

holding costs. Hence there might have to be a compromise depending on the space 

limitations. 

As we know, the Work-in-progress inventory holding cost and the serviceable inventory 

holding cost are both functions of h. By making the remanufacturable inventory holding cost, 

h=0, we also decrease the values of the WIP holding cost and the serviceable inventory 

holding cost. To avoid that, we consider another case where we simply eliminate the holding 

cost terms from the cost function. We originally have the cost function equation as 

0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1) .( , , w w

s shI hI h I h W h W c R c R D D mMC x Q Q δ δ= + + + + + + + + +
 

By eliminating the holding cost from the cost function we have, 

0 1 0 0 1 1 0 0 1 1 0 0 1 1)( , , w w

s sh I h W h W c R c R D D mMC x Q Q δ δ= + + + + + + +
 

By doing this, we do not alter the other holding costs in any manner. Table 5.4 lists the cost 

values for the parameter space considered. Figures 5.4a and 5.4b show the effect of x on the 

cost function for different disposal levels when the holding cost is eliminated from the cost 

function. 
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Table 5.4: Effect of x, Q0 and Q1 on the cost when h is eliminated from the cost function  

(Optimal values in bold) 

x Q0=Q1=1 Q0=Q1=2 Q0=Q1=3 Q0=Q1=4 Q0=Q1=5 

1 27.8847 26.3514 25.7445 25.4691 25.3324 

2 23.2407 21.9584 21.3034 20.9096 20.6443 

3 22.033 21.2817 20.8812 20.6383 20.4769 

4 21.5345 21.0893 20.8426 20.6900 20.5875 

5 21.2821 21.013 20.8605 20.7649 20.7001 

6 21.1485 20.9857 20.8923 20.8334 20.7934 

7 21.0800 20.9831 20.9274 20.8923 20.8684 

8 21.0485 20.993 20.9615 20.9418 20.9284 

9 21.0383 21.0089 20.9927 20.9828 20.9761 

10 21.0399 21.0268 21.0201 21.0163 21.0139 

11 21.0479 21.0445 21.0436 21.0435 21.1191 

12 21.0587 21.061 21.0634 21.0654 21.1894 

13 21.0703 21.0758 21.0799 21.0829 21.2596 

 

  

 

Figure 5.4a: Effect of base stock inventory level x on the cost for Q0=Q1=1 

(h eliminated from cost function) 
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Figure 5.4b: Effect of base stock inventory level x on the cost function for Q0=Q1=4 

(h eliminated from cost function) 
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and Q1. As we see from Table 5.4, the value of x decreases as we increase the disposal levels. 

In realistic situations, the remanufacturer decides the disposal level based on the space 

limitations since the cost continuously decreases for higher values of Q0 and Q1. 

20.35

20.4

20.45

20.5

20.55

20.6

20.65

20.7

20.75

2 3 4 5

Q0=Q1=4

C
o

s
t 

F
u

n
ct

io
n

x 



www.manaraa.com

 

56 

 

We try another case to completely shift the focus onto the serviceable inventory. In this case, 

we totally eliminate all other costs from the cost function except the serviceable inventory 

holding cost. Now, the cost function will be 

0 1 0 0 1 1)( , , s sh I c R c R mMC x Q Q = + + + (without the WIP holding costs and the disposal 

costs) 

Table 5.5 lists the cost values for this case. We then plot the effect of x on the cost function 

and determine the optimal value.  

Table 5.5: Effect of x, Q0 and Q1 on cost when all holding costs are eliminated 

x Q0=Q1=1 Q0=Q1=2 Q0=Q1=3 Q0=Q1=4 

1 27.6090 26.0547 25.4300 25.1589 

2 23.0222 21.7175 21.0493 20.6467 

3 21.874 21.1136 20.7069 20.4597 

4 21.4121 20.9629 20.7133 20.5585 

5 21.1830 20.9119 20.7579 20.6612 

6 21.0655 20.9015 20.8073 20.7478 

7 21.0087 20.9111 20.8549 20.8195 

8 20.9861 20.9302 20.8983 20.8784 

9 20.9828 20.9531 20.9367 20.9266 

10 20.9900 20.9767 20.9698 20.966 

11 21.0025 20.9991 20.9981 20.9979 

12 21.0171 21.0194 21.0218 21.0237 

13 21.032 21.0374 21.0810 21.0445 

 

Here again, the cost decreases as the disposal levels increase. This is due to the elimination of 

holding costs from the cost function. Also, there could be as many products as possible in the 

remanufacturable inventory and also in the remanufacturing process (WIP inventory) since 

that does not affect the cost function in any manner. It only decreases the overall cost because 



www.manaraa.com

 

57 

 

higher levels of remanufacturable inventories minimize the need for manufacturing a new 

product. Now, all the remanufacturer is paying for is the serviceable inventory. Hence it is 

justified for the values of x to decrease as we increase the disposal levels.  

 

Figure 5.5a: Effect of base stock inventory level x on the cost function for Q0=Q1=1 (All holding costs 

eliminated) 

 

 

Figure 5.5b: Effect of base stock inventory level x on the cost function for Q0=Q1=4 (All holding costs 

eliminated) 
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The cost function, however, follows the same trend as in other cases. The cost is least at a 

particular value of x which we consider to be optimal for that disposal level. The entire focus 

is on the serviceable inventory and all the above cases are able to give us the optimal base 

stock level for a certain disposal level that minimizes the long-run cost per unit time. 

Here, we draw a comparison of the cost values at the optimal x for all the four cases. These 

values are optimal only for Q0=Q1=1. This is just to give a better comparison of each 

situation. 

For Q0=Q1=1, 

Table 5.6: Comparison of the optimal base stock level and cost for all the cases 

 
 

x
*
 

 
*

0 1( , , )C x Q Q  

Case 1:  All holding costs included 10 28.2446 

Case 2:  Remanufacturable holding cost h=0 21 27.4594 

Case 3: Remanufacturing holding cost h=0.5 but eliminated from 
the cost function 

9 27.8847 

Case 4: All holding costs eliminated from the cost function 9 27.6090 

 

From Table 5.6, we can observe that when the remanufacturable inventory holding cost, h is 

zero, the cost is the least. This is obvious since the WIP and serviceable inventory holding 

costs are functions of h and making h=0 decreases their value and in turn decreases the cost 

function. 

 So far, in our comparisons, we considered both the disposal levels to be equal. It would be 

interesting to know how each of the disposal levels individually affects the cost function. 
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Below is the table which shows the effect of Q0 on the cost for the case where all the holding 

costs are included in the cost function.  

Table 5.7: Effect of Q0 on the cost (holding cost eliminated from the cost function) 

s Q0=Q1=1 Q0=2; Q1=1 Q0=3; Q1=1 Q0=5; Q1=1 Q0=10; Q1=1 

1 28.2446 27.6077 27.4187 27.3412 27.3333 

2 23.3965 23.0525 22.9697 22.9435 22.9417 

3 22.1275 21.9394 21.8943 21.8802 21.8792 

4 21.5984 21.4882 21.4617 21.4534 21.4529 

5 21.3272 21.2599 21.2437 21.2387 21.2384 

6 21.181 21.1393 21.1294 21.1264 21.1262 

7 21.1037 21.078 21.0719 21.0701 21.07 

8 21.066 21.0504 21.0467 21.0457 21.0456 

9 21.0512 21.0421 21.04 21.0394 21.0394 

10 21.0496 21.0446 21.0435 21.0432 21.0432 

11 21.0551 21.0527 21.0522 21.0521 21.0521 

12 21.0641 21.0632 21.0631 21.0632 21.0632 

13 21.0744 21.0745 21.07253 21.0743 21.0743 

 

The important thing to note here is Q0 does not seem to have any significant effect on the cost 

function beyond Q0=Q1=5. If we observe the cases when Q0=1 and Q0=5, we notice that 

increasing Q0 decreases the cost and also the optimal base stock level. But beyond Q0=5, for 

all higher values of Q0 and Q1, the cost does not differ. This could be due to the Type 0-first 

strategy we follow in this thesis. Whenever there is a demand, the Type 0 products are pulled 

first and therefore they are not ‘held’ in the inventory for a long time to effect the cost 

function. This could be better understood by observing the effect of Q1 on the cost (Table 

5.8).  
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From the Table 5.8, we can observe that increasing the disposal level for Type 1 

remanufacturable inventory increases the cost. This is again due to the priority strategy used 

in the inventory policy. Type 1 products are pulled into the remanufacturing process only 

when the Type 0 inventory is zero and there is a probability for the Type 1 products to sit in 

the inventory for a longer time.  Also, as the Q1 increases, the value of the optimal base stock 

level decreases. 

Table 5.8: Effect of Q1 on the cost function 

s Q0=Q1=1 Q0=1; Q1=2 Q0=1; Q1=3 Q0=1; Q1=4 Q0=1; Q1=10 

1 28.2446 27.7674 27.7371 27.9138 30.3305 

2 23.3965 22.6837 22.3215 22.126 21.9139 

3 22.1275 21.7074 21.486 21.3639 21.2164 

4 21.5984 21.3636 21.2375 21.1681 21.0885 

5 21.3272 21.1964 21.1268 21.0894 21.0525 

6 21.181 21.1103 21.0739 21.0556 21.0437 

7 21.1037 21.0684 21.0518 21.0447 21.047 

8 21.066 21.0516 21.0467 21.0461 21.0561 

9 21.0512 21.0491 21.0508 21.0539 21.0674 

10 21.0496 21.0543 21.0595 21.0644 21.079 

11 21.0551 21.0632 21.0702 21.0758 21.0901 

12 21.0641 21.0737 21.0811 21.0867 21.1 

13 21.0744 21.0842 21.0914 21.0967 21.1087 

 

All the above cases and comparisons give a good understanding of the effect of each 

parameter on the cost function. This thesis is concluded with some remarks in the next 

chapter. 
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6. CONCLUSION 

 

The major challenge of servicizing is the decision making regarding both product 

replacements and inventory management.  Since the customer is ensured a working product at 

all times, these decisions become very important in a servicizing scenario and thus the 

research in these areas. Also, the stochastic nature of the product quality becomes an issue in 

the remanufacturing scenario. Condition monitoring plays a major role in helping reduce the 

number of failed products and obtaining better quality remanufacturable returns.  

6.1 Thesis Contribution 

This thesis solves the problem of managing the inventory in a manufacturing/ 

remanufacturing hybrid system managing a fleet of products in service that are condition 

monitored at discrete intervals. The system is defined as a product-based service scenario 

where the products in service are monitored for their working condition and the decision to 

replace it or not is made based on the condition information available at discrete intervals. 

These replacement decisions are made by following a replacement policy defined by Makis 

and Jardine (1992). Now, the problem left unresolved is the management of inventory in the 

hybrid system with manufacturing and remanufacturing processes working together to satisfy 

the customer demand. Review of literature on the various inventory policies revealed that a 

good fit for this scenario would be the continuous-review base stock policy because of the 

following characteristics of the system in this thesis.  

(a) Demand occurs one at a time.  

(b) Remanufacturing leadtimes are known. 

(c) Remanufacturable products are pulled ‘one at a time’ into the remanufacturing process. 
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(d) Demand can be approximated with a continuous distribution (Poisson’s distribution in 

our case) 

According to this policy, whenever a product is taken out of service, one ‘as good as new’ 

product is given back to the customer from the serviceable inventory as a replacement. And 

whenever a replacement is made, a product from the remanufacturable inventory is pulled 

into the remanufacturing process to replenish the serviceable inventory. It is like a ‘purchase 

order’ (remanufacturing) being placed when a ‘sale’ (replacement) is made. But, since the 

remanufacturing process had a leadtime (which is known), we require to maintain an 

inventory of products for ready replacements. Also, the demand rate is higher than the return 

rate. Hence, we also need to integrate a manufacturing process to fill in the gap when the 

remanufacturing process alone is unable to satisfy the demand.  

Literature shows that this policy has been applied to highlight the importance of categorizing 

products before remanufacturing. The stochastic nature of the leadtimes of the 

remanufacturing process was focused on. However, this thesis applies this model to a service 

paradigm with condition monitoring which stands apart in the following aspects. Condition 

monitoring eliminates the effort of inspecting the returns and categorizing them. Also, 

availability of the condition information at frequent intervals has control over the return rates 

of products in each state. That is, the service provider is able to make better decisions 

concerning the replacement of the product with condition information as opposed to waiting 

for failure. This also minimizes the over-all cost since we would have products returning in 

two different states.  For these products, neither are the holding costs same nor the 

remanufacturing leadtimes. The remanufacturing effort required to process a low quality 

product is higher than that required for a high quality one. This means that the higher quality 

products have lower remanufacturing leadtime, lower remanufacturing cost, and lower WIP 
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holding cost (since the time spent in the manufacturing process is lower). Hence it wouldn’t 

be realistic to assume that all the costs for returns of two different states are the same. This 

thesis considers the idea by Aras et al. (2004) where the products are categorized based on 

their quality (condition). The continuous-review base stock policy has been chosen to manage 

the inventory in our system and the formulation for a two-state system to calculate the cost 

has been adopted from [14].  

Using the base stock policy, we were able to make inventory decisions for the servicizing 

scenario and find the optimal base stock level for the serviceable inventory position. We also 

varied the assumptions for the holding costs to study the change in the behavior of cost 

function with the decision parameters. All the holding costs were eliminated one at a time and 

also all together, in order to study the serviceable inventory in particular and determine the 

optimal base stock level ignoring the effect of all other parameters. It has been demonstrated 

with a numerical example that in the case where the remanufacturable inventory has a zero 

holding cost, the overall cost is minimum compared to other cases where the holding costs 

were ignored from the cost function. The study of the behavior of cost function with different 

assumptions concerning the holding costs gave us a detailed understanding of nature of 

different scenarios.  

6.2 List of Assumptions 

 All the assumptions made in this thesis in both the replacement model and the inventory 

model are listed below. 

• The customer has a working product available at all times. No demand is lost. 

• Life of the product follows the Proportional Hazards Model. 
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• Condition of the product is observed at finite intervals and condition information is 

available only at these instants. 

• All replacement decisions are made based on the age and condition of the system and 

only at decision instants. 

• System deteriorates continuously over time and failure can occur at any instant. All 

failures are discarded and replaced immediately. 

• The system can exist in two states only, defined by the value of Z.  

• Customer demand and product returns are modeled as independent Poisson processes  

• Remanufacturing returns an ‘as good as new’ product 

• All the demand is satisfied by the remanufacturing process before resorting to 

manufacturing. Remanufacturing is assumed to be cheaper than manufacturing. 

• Remanufacturing costs and leadtimes are assumed to vary with the condition of the 

product. Higher the quality of the return, lesser the remanufacturing effort required for 

processing it to ‘as good as new’ condition and lesser the cost and leadtime associated 

with it. 

• All returns have their respective inventories depending on their condition. 

• Type 0-first pull strategy is followed in remanufacturing the product returns.  Whenever a 

demand occurs, Type 0 product is pulled into the remanufacturing process. In the case 

where Type 0 inventory is zero, the Type 1 products are pulled. If both the inventories are 

zero, the next available inventory is processed regardless of its type. 

• The holding costs for the remanufacturable inventories of Type 0 and Type 1 products are 

the same. 

• Manufacturing is instantaneous. 
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6.3 Limitations and Future work 

This thesis enhances the current literature on replacement policy and inventory management, 

but further research is warranted.  

This thesis assumes the demand and return rates to be processes from the replacement policy. 

This is an approximation. More accurate information on the distribution of demand and return 

rates will improve the current model and help us achieve more accurate results. Also, it 

enables us to integrate the replacement policy and the inventory policy into one whole which 

can address these two problems.  

The inventory model in the thesis assumes all the returns to fall into only two categories. This 

suits our model since the replacement model is assumed to have two states only. However, 

Wu and Ryan (2008) have extended the same formulation for arbitrary number of states. It 

would be intriguing to integrate these states as categories in the inventory model and have ‘n’ 

number of categories, one for each state or a range of states. This would expand the usage of 

this model. 

This thesis assumes the manufacturing process is instantaneous. Though this assumption 

makes the model simpler, it is, however, not realistic. For better applications, the material 

flow and stock policies associated with manufacturing could be made more explicit. This 

would however add complexity to the computations. 

Remanufacturing is assumed to be cheaper than manufacturing in this thesis. This needn’t be 

true in all cases. There exist products where manufacturing a new product would cost much 

less than remanufacturing a used product due to issues related to parts availability, parts 

compatibility etc. 



www.manaraa.com

 

66 

 

Another aspect in the inventory model that could be further researched is the holding costs of 

the remanufacturable inventories. This thesis considers the holding cost of the product returns 

prior to remanufacturing are all the same. This could be looked at, in one way, as all the 

products being of no use before being processed and in the manufacturer’s point of view, 

mean the same. But however, the higher quality products consist of more value than the lower 

quality ones and the holding costs might differ in a certain cases.  
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